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A primary goal of 3D similarity searching is to find compounds with similar bioactivity to a
reference ligand but with different chemotypes, i.e., “scaffold hopping”. However, an adequate
description of chemical structures in 3D conformational space is difficult due to the high-
dimensionality of the problem. We present an automated method that simplifies flexible 3D
chemical descriptions in which clustering techniques traditionally used in data mining are
exploited to create “fuzzy” molecular representations called FEPOPS (feature point pharma-
cophores). The representations can be used for flexible 3D similarity searching given one or
more active compounds without a priori knowledge of bioactive conformations or pharmacoph-
ores. We demonstrate that similarity searching with FEPOPS significantly enriches for actives
taken from in-house high-throughput screening datasets and from MDDR activity classes COX-
2, 5-HT3A, and HIV-RT, while also scaffold or ring-system hopping to new chemical frameworks.
Further, inhibitors of target proteins (dopamine 2 and retinoic acid receptor) are recalled by
FEPOPS by scaffold hopping from their associated endogenous ligands (dopamine and retinoic
acid). Importantly, the method excels in comparison to commonly used 2D similarity methods
(DAYLIGHT, MACCS, Pipeline Pilot fingerprints) and a commercial 3D method (Pharma-
cophore Distance Triplets) at finding novel scaffold classes given a single query molecule.

Introduction
The search for compounds with similar bioactivity to

a reference ligand but with different molecular frame-
works has been variously termed “scaffold hopping”,1
“leapfrogging”,2 and “lead-hopping”;3 in silico approaches
that seek to systematize this practice have been intro-
duced recently.1,3-13 The ability to move to new scaffolds
can be of interest in situations where the natural
ligands or substrates of protein targets are known but
synthetic inhibitors are not and structural information
about the target protein is not available. An ideal
similarity search method could use endogenous ligand
structures to discover drug-like mimetics in large da-
tabases in an automated manner. Alternatively, a
scaffold-hopping method could be used to break out of
protected “patent space” around drugs or when lead
compounds have intractable chemistry, “flat” structure-
activity relationships, or poor pharmacological proper-
ties (e.g., molecular weight, solubility, toxicity, mem-
brane permeability). The stratagem can thus be an
important tool to identify a structurally diverse set of
biologically related hits. The ability to establish diverse
hits early in the drug discovery process will help
maintain a range of compounds for lead optimization
as structural classes are eliminated during later stage
development.

A well-defined criterion for scaffolds is essential for
evaluating the diversity of a compound set. Several
classifications of chemical structures have been re-
ported.14,15 A common perception rooted in graph theory
is that compound structures may be reduced in a
hierarchical manner as a connection of ring systems and

linkers that form frameworks or scaffolds, which may
contain side chains of functional groups.16 A topological
scaffold may thus be extracted by simple pruning of side
chains,17 and optionally discarding information concern-
ing heteroatoms and bond orders to uncover the graph
framework. Ring systems are a further deconstruction
with utility in database searching18,19 and for estimating
occupied chemical and drug space.20-23 While many such
objective classifications for scaffolds now exist, the
scaffold-hopping ability of 3D-similarity-based or phar-
macophore-based search methods is commonly left up
to the subjective chemical intuition of the method
authors.

All similarity methods are based on the assumption
that structurally similar molecules may have similar
activity,24 although the degree of similarity required for
similar activity is a matter of dispute.25 In theory, the
increase in structural information from 2D to 3D should
provide a more accurate basis for finding new com-
pounds with similar bioactivity. However, 3D-similarity
approaches are faced with a number of challenges not
faced by topological (2D) methods, such as the genera-
tion of flexible molecular conformations and alignment,
along with relatively longer computing times. Numerous
3D-similarity methods have been reported,26 some as-
serting primacy over 2D methods;3,27 nevertheless,
direct comparisons made in the influential study by
Brown and Martin11 and in more recent reports28,29

maintain that current 3D methods offer no significant
advantages over topological searches in recalling actives
or in sampling structural diversity.

Published methods for ligand-based 3D searching
commonly take the form of queries based on pharmaco-
phoresspairs, triplets, or quartets of features (hydro-
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phobic group, hydrogen-bond donor or acceptor, etc.)
separated from other features by binned distance ranges.
For example, a large number of “potential pharmacoph-
ores” can be generated automatically for multiple ligand
conformers and stored as fingerprints or keys; the over-
lap between pharmacophore sets for molecules being
compared is then calculated.10-12 Alternatively, phar-
macophore alignments can be carried out at run time.30

Other work has incorporated whole-molecule informa-
tion into pharmacophores on the basis of geometric dis-
tances between defined features and all ligand atoms.27

Similarity has been measured between 3D topomeric
fragments3,5 and between maximal common substruc-
tures.3,31,32 In contrast to the use of phamacophore
points, similarity based on physicochemical property
descriptors33 and molecular fields has been explored.34-36

Finally, pharmacophoric features can be used in the con-
text of 2D similarity searching37 or for classification38,39

and diversity analysis.40 The references cited above are
by no means exhaustive and represent only a sampling
of approaches for tackling 3D similaritysa task that
clearly has multiple problems with multiple solutions.

The intention of the present work is to create a rapid,
automated 3D method that incorporates ligand flex-
ibility. When given a single known drug or natural
ligand the method should retrieve from large databases
bioactive compounds that are more diverse than those
recovered by commonly used 2D methods. In addition
to its use as an in silico screening tool, the method
should provide pharmacophore-type information about
the highly ranked molecules to facilitate the transition
from hit discovery to lead optimization. Further, the
method may be used as an orthogonal approach in
cheminformatics analyses of high-throughput screening
(HTS) data to rescue false negatives missed due to low
2D fingerprint similaritysa concept promoted in data
fusion strategies.41 FEPOPS (feature point pharma-
cophores) evaluates the regional correlation of additive
physicochemical and pharmacophoric properties, ben-

efiting from the advantages gained from both field-based
similarity and pharmacophore-based queries. Conceptu-
ally, the approach bears some resemblance to the 3D-
QSAR technique of CoMMA (comparative molecular
moment analysis), where electrostatic or hydrophobic
property fields are used for comparing molecules with-
out molecular superposition.42,43 The defining aspect of
FEPOPS is the incorporation of clustering techniques
from the field of data mining, which produce a scaled-
down representation by k-means clustering of atomic
coordinates into feature points, followed by the selection
of representative conformers by k-medoids clustering.
The method is fuzzy in three important ways: (i) the
decomposition of atoms into feature point representa-
tions; (ii) the use of physicochemical descriptors, which
are less specific than topological descriptors;33 and (iii)
the reduction of conformational space covered by a
molecule to a small number of representative data
points. The fuzzy FEPOPS representations retrieve
strikingly diverse compounds with similar biological
activity to reference queries taken from the MDDR
(MDL Drug Database Report) and from real-life HTS
datasets (vide infra). Further, we establish a specific,
objective criterion for measuring scaffold hopping as
well as “ring-system hopping” using molecular equiva-
lence indices.44,45

Theory and Methods

Overview of FEPOPS Calculation and Search. The
overall strategy for generating FEPOPS representations and
similarity searching is shown in Figure 1 and summarized
below (followed by a more detailed description). Steps 1-5 for
generating FEPOPS apply to both the query molecule and the
target database to be searched.

(1) Compounds are preprocessed to generate 3D structures,
assign protonation states, enumerate tautomers, and calculate
partial charges and atomic log P values.

(2) Multiple conformers are generated by systematic rotation
of flexible bonds.

Figure 1. Schematic showing the creation of FEPOPS representations. The steps correspond to those outlined in the first section
of the Methods. (1) compound preprocessing, (2) conformer generation, (3) k-means clustering of atom coordinates, (4) assignment
of features to feature points and sorting by charges, (5) k-medoids clustering of FEPOPS conformers, and storage of representative
FEPOPS conformers in a lookup table.
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(3) Ligand atoms are partitioned into a predetermined
number of k-mean clusters (typically 4) based on their spatial
coordinates.

(4) Atom-type pharmacophoric featuresspartial charge, log
P, hydrogen-bond donors and acceptorssof the atoms belong-
ing to each cluster from step 3 are summed and encoded into
the centroids to create the “feature points”. Distances between
feature points are recorded after sorting on the basis of
quadrupole directionality.

(5) FEPOPS of the compound conformers are clustered by
k-medoids to find a small number of representative conformers
for each molecule. These are stored in a lookup table.

(6) The similarity of the query molecule FEPOPS to the
FEPOPS of each database compound is calculated using
Pearson correlation.46 The rank of the highest scoring con-
former of each compound is saved.

Compound Preprocessing. The core FEPOPS programs
are implemented in a series of custom scripts and freely
available applications. The scripts are launched from an
automated data-pipelining protocol in Pipeline Pilot (SciTegic,
San Diego, CA) by using batched SOAP (simple object access
protocol) technology. The entire protocol processes FEPOPS
representations from input 2D structures at ∼1.0 compound/
s, i.e., ∼600K compounds per week. FEPOPS are calculated
once and stored in a lookup table.

Initially, a compound library file of type sdf, mol2, or
SMILES strings is read into the protocol. Custom filters are
applied to remove duplicate compounds; compounds with less
than four atoms, more than nine rings, or more than forty
rotatable bonds; and salts or counterions associated with
compound structures. Three-dimensional coordinates are gen-
erated in Pipeline Pilot, followed by addition of hydrogens and
a brief minimization using the Clean force field.47 The proto-
nation states of ionizable groups are set at pH 7.4 on the basis
of either lookup tables of pKa values or partial least squares
models. For each compound, all tautomers are enumerated.
Finally, Gasteiger-Marsili partial charges48 are computed.

Atomic log P Calculation. log P was selected as a feature
because it is correlated with hydrophobic binding of receptors
and can be calculated atom-wise for a molecule. XlogP, an
atom-additive program that predicts octanol/water partition
coefficients,49 is used to calculate atomic log P values for each
compound.

Conformer Generation. The core computation for confor-
mational searching and atom clustering in FEPOPS is imple-
mented in a C program (for background, see refs 50 and 51).
Flexibility is simulated by systematic rotation of bonds at fixed
angle increments, followed by eviction of conformations with
van der Waals clashes. For compounds with a “drug-like”
number of rotatable bonds (less than six), torsional increments
between 10° and 120° cover FEPOPS space to a similar
degree.51 In other words, using smaller angle intervals, which
increases calculation time linearly, does not lead to a signifi-
cant increase in FEPOPS conformational information. For
compounds with greater than five rotatable bonds, increments
of 90° give the optimal trade between speed and accuracy (data
not shown); thus 90° intervals are used for the conformational
search in the present study. Similar angle intervals have been
used by other 3D methods.52,53 Indeed, the fuzzy representation
of FEPOPS is particularly suited to cover conformational space
by sampling at larger intervalsssince atoms are ultimately
partitioned into 3D space on the basis of their coordinates, the
atoms of one conformer must be reasonably distant from the
atoms of another conformer to yield a unique k-means cluster-
ing result. The conformers for compounds with five rotatable
bonds or less are generated in an exhaustive manner in 90°
intervals (maximal number of 45 ) 1024 conformers). For more
than five rotatable bonds, 1024 conformers are sampled at
random. It is worth noting that the objective of conformational
sampling in this case is not to find low-energy conformations
but to provide a reasonable coverage of the conformational
space. Furthermore, low-energy solutions are not necessarily
representative of protein-bound ligand geometries.38 Our
similarity method determines biologically relevant conforma-

tions by identifying the conformer(s) with the highest correla-
tion to the probe molecule in feature point space.

k-Means Clustering of Atoms. The k-means algorithm is
an iterative descent clustering method.54 In FEPOPS, the
atomic 3D coordinates of each ligand are partitioned into a
designated number of clusters and the geometric centers of
the clusters (centroids) are retained to represent the compound
(Figure 1). This approach has previously been used for
identifying ligand binding sites on proteins55 and for ligand
docking.51 In the present study, four clusters were used
because this allows a reasonable description of molecules of
drug-like size while retaining information about chirality,
which is lost in triplet-type representations. Additionally, four
clusters resulted in FEPOPS representations that performed
superior to two or three clusters (not shown). Previous authors
have reported approaches to representing molecules in a
reduced number of “nodes”.56,57 The algorithm initially guesses
the centroid positions. Then, for each atom, the closest centroid
is identified, followed by replacement of the centroids with the
coordinatewise average of all atoms closest to it. The algorithm
minimizes the sum of squared Euclidean distances from
centroids to atom cluster members until convergence is
achieved. In FEPOPS, each of the four centroids is assigned
five pharmacophoric features: (i) the distance to a neighboring
centroid (vide infra), (ii) the sum of the partial charges of its
cluster-member atoms, (iii) the sum of atomic log P values of
its cluster-member atoms, and binary flags that indicate
occurrence of (iv) hydrogen-bond donors and (v) hydrogen-bond
acceptors. Additionally, the distances between juxtaposed
feature points 1 and 3 and between feature points 2 and 4 are
recorded to determine the chirality of the quartet (Figure 1).

The distribution of electrons in molecules is one of the
principle factors in determining their biological, chemical, and
physical properties.58 Prior to recording interpoint distances,
the feature points are sorted on the basis of partial charges to
enforce a four-point, or quadrupole, directionality. The most
negatively charged centroid becomes feature point 1, whereas
the most positively charged centroid is assigned to feature
point 4. Thus, the descriptor “Distance 1” encoded in feature
point 1 will contain the distance between itself, the most
negative centroid, and feature point 4, the most positive
centroid. “Distance 2” encoded in feature point 2 will contain
the distance between feature points 1 and 2, and so on. All
FEPOPS configurations are thus “prealigned” by charge
distribution, rather than using alignment of shape or geometry
during the similarity calculations. Thus, the probe molecule
descriptors can easily be compared at search time to the
descriptors of target compounds (e.g., d1 of the probe is
compared to d1 of the target compound, not d2; also see the
discussion on alignment in the “FEPOPS Weaknesses” sec-
tion). Other “field-based” conformational alignment methods
have been reported previously.35,59,60

Selection of Representative FEPOPS Conformers. One
common strategy for scaling the vast array of potential
molecular configurations down to a manageable size is to
compute an average or collective fingerprint. An alternative
approach is to cluster the conformations and subsequently
store a smaller number of explicit conformers.61 In particular,
the creation of fuzzy FEPOPS representations results in a
number of conformations that are alike or similar enough to
be redundant in terms of describing a given molecule.51

k-medoids is a nonhierarchical crisp clustering method similar
to k-means. In contrast to k-means, which minimizes the sum
of squared Euclidean distances from objects to cluster centers,
k-medoids minimizes the sum of unsquared dissimilarities of
objects to their closest representative object (the medoid).62 The
medoid is an actual object or data point that is representative
of the structure of the dataset. Selection of medoids is thus
less influenced by outliers that might skew the selection of
centrotypes. In the present study, medoids are conformers (not
conformational averages) that are representative of the total
set of a compound’s conformers. Importantly, the actual
molecular coordinates are not clustered, but rather, the matrix
of FEPOPS representations of all calculated conformers for a
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molecule are clustered (we will refer to these as “FEPOPS
conformers”). The k-medoids clustering of FEPOPS conformers
is carried out in the R language and environment63 using the
programs PAM (partitioning around medoids) and CLARA
(clustering of large applications) (described in detail in ref 62).
The data format is an n × p matrix, consisting of n FEPOPS
conformers and p features (or descriptors) for each compound.
The features are first scaled by subtracting the mean and
dividing by standard deviation, and k representative FEPOPS
conformers are selected using the function PAM for compounds
with <50 conformers or CLARA for compounds with g50
conformers. In CLARA, the partitioning is performed on a
subset of the data in multiple iterations to speed up calcula-
tion; we sample either 100 FEPOPS conformers or 50% of the
total number of FEPOPS conformers, whichever is smaller.
The number of k clusters designated was seven, based on a
thorough analysis of speed and coverage of conformational
space. In preliminary studies, we found that, for compounds
taken from X-ray structures of protein-ligand complexes, a k
value of 7 typically yields a set of medoids containing at least
one conformer that is approximately the same as the bioactive
conformation (by visual inspection of FEPOPS descriptor space
in a modeling package). Additionally, higher k values resulted
in redundant conformers for molecules of drug-like sizes (data
not shown). If a molecule has less than seven possible
conformations, clustering is bypassed and all nonduplicate
FEPOPS conformers are saved. We chose not to use a statisti-
cal metric61 to evaluate the goodness of cluster separations
during FEPOPS conversions, since calculations at multiple k
values would be highly impractical for converting large
databases.

FEPOPS Similarity Calculation. The similarity between
FEPOPS representations was determined by Pearson correla-
tion. Pearson was suitable for this purpose due to the nature
of the continuous, nonbinary FEPOPS descriptors stored in a
matrix format. The feature descriptors are first scaled by mean
centering (offsetting the values so that their sum is zero) and
then divided by a factor so that the variance of the scaled data
is equal to one. For all FEPOPS conformers of compounds in
the test sets, the Pearson correlations to the FEPOPS con-
formers of the probe were calculated. The compound conformer
with the highest correlation to any probe conformer was then
retained for the similarity score (i.e., the “single nearest
neighbor” method). In other words, for multiple conformations
(i) of the probe and multiple conformations of a database
molecule (j), the similarity score is the maximum similarity
over all i and j. We used maximum similarity of i and j rather
than mean similarity on the basis of the rationale that there
is a preferred conformational alignment between any two pairs
of molecules that best represents the pharmacophore. The
target database is thus reranked in its entirety by correlation
to the probe. In searches where more than one probe molecule
was used, the maximum similarity among multiple conforma-
tions of all probe molecules was kept for each database
molecule.

No attempt is made to computationally optimize the search
procedure due to the short calculation times. The time required
for a FEPOPS single-ligand similarity search and subsequent
ranking is on the order of ∼8 min for the entire MDDR
database or 2 min for a 29 197 compound subset (see Chemical
Datasets). Note that Pearson is not appropriate for absolute
similarity comparisons between two compounds, but is useful
rather for quantifying relative distances between large sets
of compounds to a probe. The Pearson coefficient (ranging from
-1 to 1) reflects the degree of linear relationship or strength
of association between variables; in the present case, the
strength of association between test compound features and
the reference molecule features with respect to the entire
dataset is measured in order to produce a ranked list.

2D Similarity Searches. To assess the scaffold-hopping
ability of FEPOPS, its performance was compared with three
2D-descriptor methods used routinely for similarity searches:
the 166 publicly available MDL Keys, also known as MACCS
(MDL Information Systems, Inc., San Leandro, CA); DAY-

LIGHT fingerprints (Daylight Chemical Information Systems,
Inc., Mission Viejo, CA); and Pipeline Pilot Functional Class
Fingerprints with a neighborhood size of four (FCFP_4) (see
www.scitegic.com). The Pipeline Pilot fingerprints are based
on an extension of the Morgan algorithm.64 The Tanimoto
coefficient was used to calculate similarity for all 2D methods.
The searches as implemented required approximately 2 min
calculation time for a 29 197 compound database (see Chemical
Datasets). For cases where multiple probes were used, the
highest Tanimoto similarity of a database compound to any
of the probes was used to rank the compound.

Pharmacophore Distance Triplets. In addition to the 2D
search methods, we also tested the commercially available 3D
method, Pharmacophore Distance Triplets (PDT)10 from Sybyl
6.9 (Tripos, Inc., St. Louis, MO). A PDT contains three
pharmacophoric macro atoms and the three distances separat-
ing them, where the distances are binned. Each possible triplet
is represented by a single bit in a binary fingerprint; bits are
set to “1” in a PDT fingerprint when a triplet is found in a
compound during conformational searching. The automated
approach used by PDT allows for a fair comparison to be made
with FEPOPS, since neither method uses a priori pharma-
cophore models. “Hand-built” pharmacophore queries could
bias the search results if not suitably constructed. We incor-
porated three pharmacophoric features in the BinBounds.def
configuration file: hydrogen-bond acceptors, hydrogen-bond
donors, and hydrophobes. Distances between features were
binned from 3 to 15 Å at 1.5 Å intervals (nine bins). The default
100 conformations was used for both the probe and database
molecules. The above parameters result in 3754 bit strings for
each compound, as the fingerprint is a composite of all
generated conformations. A PDT fingerprint was created for
each test case probe in advance of searching. The target
database was imported into a UNITY database, and PDT
fingerprints for each database compound were generated at
search time. Tanimoto similarity was calculated using the
UNIX dbmktriplets utility (evaltype ) similar; cutoff ) 0) and
the hit lists were sorted by similarity scores in Pipeline Pilot.
The searches required approximately 8 h of single-processor
calculation time for the 29 197 compound database.

Chemical Datasets. Test sets derived from the MDDR
(MDL Drug Database Report) were selected for the case
studies due to the MDDR classification of database records
according to biological activities. FEPOPS typically converts
>95% of compounds successfully. (The majority of failures
occur during the 3D conversion step; for the purpose of the
present work, no further attempt was made to include these
compounds.) Of ∼128 000 MDDR records, 121 948 structures
were successfully converted to FEPOPS representations and
stored in 1.32 million explicit FEPOPS conformations with 1.75
tautomers/compound on average. From the entire MDDR set,
a diverse subset of 30 000 compounds (hereafter called MD-
DRds) was selected using the Pipeline Pilot Functional Class
Fingerprints in the “Diverse Molecules” filter component. Of
the 30 000 compounds, 29 178 successfully converted to FE-
POPS. The MDDRds was considered representative of the
whole database and therefore used as the “background”,
because similarity searches using either MDDR or MDDRds
yield similar active recall percentages for each search method.

MDDR activity classes were selected to cover the four major
ligand-target classifications proposed by Schuffenhauer et al.:
65 enzymes, G-protein-coupled receptors (GPCR), nuclear
receptors (NR), and ligand-gated ion channels (LGIC). The
ligand targets in the dataset consisted of (i) COX-2 (enzyme),
MDDR Activity Index ) 78331, 642 records converted; (ii)
5-HT3A (LGIC), MDDR Activity Index ) 06233, 788 records
converted; (iii) HIV-RT (enzyme), MDDR Activity Index )
71522, 597 records converted; (iv) D2 dopamine receptor
(GPCR), 151 agonists (MDDR Activity Index ) 11125) and 431
antagonists (MDDR Activity Index ) 07701) converted; (v)
retinoic acid receptor (NR), MDDR Activity Index ) 59505,
331 records converted. Numerous compounds associated with
the DA receptor superfamily are present in the MDDR. To
avoid false positives due to the various D1, D3, and D4 agonists
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and antagonists that could resemble dopamine, MDDR records
containing dopamine in the biological activity field or as a
substructure were eliminated from the MDDRds dataset, with
the exception of the D2 actives. In each test case, the actives
were “spiked” into the background MDDRds dataset to assess
the ability of the similarity methods to enrich for actives above
random. As noted previously by others, the assumption that
compounds are inactive for a particular biological activity
based on activity indices listed in the MDDR is not necessarily
valid, since all compounds have not been tested for all
activities;66 however, the assumption is reasonable enough for
comparison of similarity methods.

We have further selected four datasets from in-house HTS
campaigns. The HTS targets were growth hormone secreta-
gogue receptor (GHS-R; GPCR), γ-secretase (enzyme), matrix
metalloprotease-13 (MMP-13; enzyme), and a T315I mutant
form of ABL kinase (mABL; enzyme).67 The database consisted
of 60 000 randomly selected inactive compounds from our HTS
plated compound library, of which 57 017 structures were
converted successfully to FEPOPS. We opted to use multiple
probes (5, 10, or 20 compounds) for three of these test cases
rather than a single ligand to reflect situations where more
than one antagonist is known a priori. The probes were
selected from the total set of validated actives using the
Diverse Molecules filter component in Pipeline Pilot. We
computed the Pearson correlation between each FEPOPS
conformer of each database molecule to each FEPOPS con-
former of each probe molecule. The highest correlation mea-
sured for any database molecule conformer to any conformer
from the multiple probes is used as the Pearson score to rank
the compound; all other database conformers are discarded.
In the mABL study, the Novartis anti-cancer drug STI-571,
or Gleevec (imatinib), was used by itself as the reference
compound.

Scaffold Hopping Criteria. In principle, 2D-similarity
searches are less capable than 3D methods of finding com-
pounds with similar activity to a probe that are yet chemically
dissimilarsindeed, the very goal of traditional similarity
searching is to find hits that are structurally similar. (We note
that some 2D methods not included herein are tailored more
for lead-hopping than, say, MACCS or Daylight; however, such
methods are proprietary or were not available to the authors

at the time of this study.) The primary challenge for 3D
methods is to leap from the chemical space describing the
probe to distant and diverse chemical spaces. Importantly,
unbiased criteria for measuring dissimilarity between mol-
ecules should be established that are independent of the
fingerprints or descriptors used for similarity searching. One
useful strategy is to first define the chemical scaffolds of the
actives in the test set and, subsequently, to assess the
enrichment of unique frameworks among the top hits selected
by the similarity method. In the present study, we classified
scaffold classes using molecular equivalence indices (Meqi)
developed by Xu and Johnson, which are based on their
extension of the Morgan naming algorithm to labeled psue-
dographs. A molecular equivalence class is defined as an
exhaustive subset of molecules that each contain a “recogniz-
able structural feature”.44,45 Table 1 provides an example of
how these structural features can be extracted stepwise by
reduction of compound topology to create the classes. Molecular
equivalences are particularly useful, because the classes are
easy to visualize and their memberships do not shift if more
compounds are added to the dataset, as in other clustering
methods. The total number of compounds used from 5 MDDR
activity classes are shown in Table 1 as well as the number of
structural classes that occur among the datasets at the reduced
topology levels. For example, among the 642 COX-2 inhibitors,
58 “reduced scaffolds” and 18 “reduced ring systems” are
present (shown in bold). A reduced scaffold is essentially an
ordered ring system containing information about ring con-
nectivity and ring edges, but not ring size. In contrast, a
reduced ring system (RRS) is an unordered ring system
containing information about the number of rings and internal
edges, but not the order of connectivity. RRS is the mostly
broadly defined class and produces the smallest number of
structural clusters. Reduced scaffolds and RRS representations
were chosen in the present study to evaluate scaffold hopping
because ring systems are key in determining shape and
orienting the functional groups that guide receptor binding
and are important in the pharmacological profiles of drugs.23

Importantly, the Meqi scaffolds and ring systems serve as an
impartial and stringent basis on which to evaluate chemotypes,
unrelated to the fingerprinting methods herein.

Table 1. Reduction of Compound Topology: “Molecule Equivalence Indices” as Criteria for Scaffold Hopping

a The number of actives used for similarity searching (see Theory and Methods).
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Results

Active Enrichment. FEPOPS was compared to
three topological search methods, FCFP_4, MACCS, and
DAYLIGHT, as well as a 3D method, PDT. Tradition-
ally, the success of similarity methods is judged by the
“quantity”, or the recall, of known actives from a
database. To an experimental screener, the important
question concerning active recall is how many actives
can be retrieved above a designated cutoff containing a
practical number of compounds for testing? In the
current study, however, we also stress the medicinal
chemist’s perspective by assessing the “diversity” or
“quality” of each hit list based on the recall of active
scaffold classes (i.e., scaffold hops). The critical question
in terms of scaffold hopping is how well do the methods
sample among all possible active chemotypes above a
designated cutoff? In other words, does the method find
actives dissimilar enough from the probe to be consid-
ered novel scaffolds in the eyes of a medicinal chemist?
While we acknowledge that many 2D similarity methods
were not designed with the intent of scaffold hopping
(including the methods herein), we examined how this
difference in descriptor design translates in practice.
Table 2 provides a comprehensive summary of the
percentages of actives, active scaffolds (“Reduced Scaf-
fold” topology from Table 1), and active ring systems
(“Reduced Ring Systems” topology from Table 1) re-
trieved by all three methods using single ligand probes
for the five MDDR targets. In practice, the number of
compounds that can be tested on the basis of a similarity
search is limited. On this basis, we selected a stringent
and practicable cutoff of the top 1.0% most similar
compounds in order to assess enrichments, correspond-
ing to approximately 296 compounds that would need

to be tested (for the MDDRds test set). It is clear that
a majority of the actives do not need to be recalled in
order to return a sizable percentage of the active
scaffolds and ring systems. The following results dem-
onstrate that FEPOPS is ideal for capturing the largest
number of scaffolds within a reasonable number of
“cherry picks”.

COX-2 Inhibitors. COX-2 is an oxidoreductase (EC
1.14.99.1) targeted by numerous therapeutics for pain
and inflammation. The COX-2 inhibitor SC-558 was
selected as the probe, since an X-ray cocrystal complex
structure was available.68 The 3D coordinates (PDB code
1CX2) were used to obtain a single FEPOP for the
bioactive form of the compound by disabling flexibility
during the calculation. The results were compared with
the results for FEPOPS calculations allowing incremen-
tal flexibility in the four rotatable bonds (Table 2). In
the top 1% of compounds most similar to SC-558, 4.4%
of the 642 COX-2 inhibitors were retrieved using the
bioactive form versus 5.8% when flexibility is incorpo-
rated (see Discussion). FCFP_4 retrieved the highest
percentage of actives (7.2%) given the SC-558 probe. In
contrast, FEPOPS identified the largest number of
active scaffolds and reduced ring systems (RRS). In the
top 1%, 44% of all active ring systems were sampled by
FEPOPS (rigid) versus 17% for FCFP_4, 22% for
MACCS, 11% for DAYLIGHT, and 22% for PDT, indi-
cating that the most diverse hits are retrieved by
FEPOPS. The results are similar for scaffold retrieval.
Figure 2 shows cumulative recall curves for the recovery
of COX-2 inhibitor scaffolds (top panels) and ring
systems (bottom panels). Cumulative recall curves are
useful for visual comparison of similarity methods
because they are based on ranks rather than scores.29

Table 2. Recall of MDDR Actives, Active Scaffolds, and Active Ring Systems by Single-Ligand Similarity Searching

% recalled in top N%a

activesb active scaffolds active ring systems

target ligand probe method N ) 1 N ) 0.5 N ) 0.1 N ) 1 N ) 0.5 N ) 0.1 N ) 1 N ) 0.5 N ) 0.1

COX-2 SC-558 bioactive FEPOPS 4.4 2.4 0.3 21 12 3 44 33 11
COX-2 SC-558 flexible FEPOPS 5.8 3.1 1.6 22 16 7 39 33 22
COX-2 SC-558 FCFP_4 7.2 6.1 1.9 7 7 3 17 17 11
COX-2 SC-558 MACCS 1.6 1.4 0.3 7 7 2 22 22 6
COX-2 SC-558 DAYLIGHT 6.1 5.4 1.9 9 5 2 11 11 6
COX-2 SC-558 PDT 1.6 1.0 0.0 9 7 0 22 22 0
5-HT3 extreg 194584 FEPOPS 5.3 3.6 0.8 17 13 4 27 18 9
5-HT3 extreg 194584 FCFP_4 8.2 7.1 2.9 14 10 3 20 16 5
5-HT3 extreg 194584 MACCS 6.1 3.0 1.3 18 12 7 23 14 11
5-HT3 extreg 194584 DAYLIGHT 6.0 4.4 2.5 13 10 7 16 11 9
5-HT3 extreg 194584 PDT 7.0 4.0 1.3 18 10 3 27 16 7
HIV-RT extreg 236942 FEPOPS 3.5 2.5 1.2 9 7 4 17 14 6
HIV-RT extreg 236942 FCFP_4 1.3 1.2 1.0 7 3 1 14 6 3
HIV-RT extreg 236942 MACCS 1.5 1.2 1.0 3 3 1 6 6 3
HIV-RT extreg 236942 DAYLIGHT 1.2 1.0 1.0 3 1 1 6 3 3
HIV-RT extreg 236942 PDT 1.4 0.0 0.0 4 0 0 6 0 0
D2 Dopamine FEPOPS 1.8 1.3 0.5 8 6 3 10 8 4
D2 Dopamine FCFP_4 1.0 0.0 0.0 6 0 0 4 0 0
D2 Dopamine MACCS 0.1 0.1 0.0 3 1 0 2 2 0
D2 Dopamine DAYLIGHT 0.7 0.7 0.0 3 3 0 2 2 0
D2 Dopamine PDT 3.9 2.2 1.1 7 6 4 15 13 8
RAR retinoic acid FEPOPS 24.0 15.0 3.8 37 33 15 60 60 33
RAR retinoic acid FCFP_4 11.0 10.0 4.9 33 30 26 40 40 20
RAR retinoic acid MACCS 13.3 9.7 4.5 30 22 15 47 33 27
RAR retinoic acid DAYLIGHT 10.4 7.8 3.6 26 22 15 13 13 13
RAR retinoic acid PDT 8.6 6.3 2.9 29 25 7 47 40 13

a See Table 1 for total number of actives, reduced scaffolds, and reduced ring systems for each target. b The % actives possible in the
given percentile cutoffs is <100% in all cases.
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The recovery of scaffolds and ring systems in the top
2% of the database is displayed (Figure 2, at left). We
also assessed what percent of the database would need
to be screened in order to find 70% of the active scaffolds
and ring systems (Figure 2, at right). For example,
FEPOPS (flexible search) found 70% of the active ring
systems in the first 7% of the database, versus 20% of
the database for PDT.

For each ring system recovered in the top 1%, the
highest ranking member along with its actual rank is
shown in Figure 3. Several of the active ring systems
retrieved by FEPOPS are strikingly divergent from the
probe. In certain cases, substituent differences preserve
the overall log P and charge character of the probe but
possess an entirely different “bulkiness”, such as the
compound from RRS 2 in Figure 3. Notably, ring
systems 2, 4, 6, and 8 found by FEPOPS were not found
by the 2D-based searches. The compounds shown from
these ring systems (Figure 3, bioactive probe conforma-
tion) have Tanimoto similarities to the probe of 0.13,
0.06, 0.17, and 0.11, respectively using FCFP_4 descrip-
tors (i.e., they are dissimilar in practical terms). The
scaffold hops made by FEPOPS could not have been
made by following the chemical approach of isosteric
replacement. In contrast, the 2D methods typically find
compounds that retain the tricyclic core of SC-558
despite their membership in different RRS classes
(Figure 3).

5-HT3A. The 5-hydroxytryptamine receptor (3A) is
a ligand-gated ion channel involved in neurotransmitter
reuptake and a significant pharmacological target of
antidepressant medications. The probe for similarity
searching was selected at random by Pipeline Pilot from
the 788 MDDR actives (see structure in Figure 5).
Enrichment for the total number of actives recovered
was again highest for FCFP_4 (Table 2). Although

FEPOPS showed the lowest active recovery, its identi-
fication of active ring systems was the best at the 0.5%
and 1.0% cutoffs (Figure 4, left). Overall, 27% of the
active ring systems are recovered in the top 1% by
FEPOPS and PDT; however, PDT, MACCS, and FE-
POPS all perform competitively at recalling 70% of the
active ring systems (Figure 4, right). For each RRS
recovered in the top 0.5%, the highest ranking member
along with its actual rank is shown (Figure 5). (Note
that RRS numbers do not correspond to one another
between the different target test cases.) The representa-
tive structures shown for the 2D methods generally
contain substructures that resemble the core bicyclic
ring system from the probe. Half of the ring systems
retrieved by the 3D methods were not found by the 2D
methods (RRS 8, 10, 12, and 15 for FEPOPS and RRS
1, 15, 24, and 44 for PDT). FCFP_4 and MACCS each
found one unique ring system (RRS 35 and RRS 40).
This suggests that overall the 3D methods sample the
diversity of 5-HT3A antagonist chemotypes more ef-
fectively in the top percentiles.

HIV-RT. HIV reverse transcriptase is a nucleotidyl
transferase (EC 2.7.7.49) and a significant target of anti-
retroviral compounds. The probe for similarity searching
was selected at random by Pipeline Pilot from the 597
MDDR actives. In this test case, FEPOPS retrieved the
highest percentage of actives, scaffolds, and ring sys-
tems at any threshold above the top 1% most similar
compounds (Table 2 and Figure 6): 21 actives from
seven scaffolds and six ring systems were identified in
the top 1% when given the single probe. In contrast to
its performance in the early portion of the RRS recall
curve, DAYLIGHT recalled 70% of the active ring
systems in the smallest percentile of the MDDRds
(Figure 6). In the top 100 hits from each method (top

Figure 2. Cumulative recall of the 58 active scaffold classes (top) and 18 reduced ring systems (bottom) from the COX-2 inhibitor
set found in the highest ranked 2% of compounds from each method. The points denote the rank of the highest scoring member
of a given scaffold class. At right, the percent of the reranked database that would need to be tested to find 70% of the active
scaffolds/ring systems.
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0.34%), only FEPOPS hops to a ring system that differs
from the probe (Figure 7). DAYLIGHT and MACCS each
have one RRS unique to their hits in the top 1%, while
FEPOPS and FCFP_4 have two.

D2 Agonists and Antagonists. Often endogenous
ligands such as peptides, hormones, or cofactors associ-
ated with proteins in vivo are known at the beginning
of the lead identification process. Ideally, an effective

Figure 3. Representatives from COX-2 RRS classes found by the similarity methods in the top 1% using the probe SC-558. Only
the highest ranked compound from each RRS is shown. The RRS designation is provided along with the percentile rank in
parentheses. RRS classes found uniquely by a method in the top 1% have an asterisk.

Figure 4. Cumulative recall of the 44 RRS classes in the top 2% for the 5-HT3A dataset (left). The percent of the reranked
database that would need to be tested to find 70% of the active scaffolds/ring systems (right).
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similarity search method could scaffold hop directly
from a given endogenous ligand to candidate lead
molecules. Consequently, we posed an especially chal-
lenging problem to the present similarity methods by
supplying dopamine as a probe to search for 548 MDDR
D2 receptor agonists and antagonists. D2 receptors
belong to the superfamily of seven transmembrane

GPCR dopamine (DA) receptors, which have been
implicated in neuropsychiatry, cardiovascular, and renal
diseases.69 For example, D2 agonist activity is involved
in the action of antiparkinsonian drugs, whereas D2
antagonist activity is associated with the antipsychotic
medications used to treat schizophrenia. It is important
to stress that a number of compounds in the MDDR

Figure 5. Representatives from 5-HT3A RRS classes found by the similarity methods in the top 0.5% using the probe shown
(MDDR extreg 194584). The RRS designation and percentile rank are provided. RRS classes found uniquely by a method have an
asterisk.

Figure 6. Cumulative recall of the 36 RRS classes in the top 2% for the HIV-RT dataset (left). The percent of the reranked
database that would need to be tested to find 70% of the active scaffolds/ring systems (right).
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dataset antagonize binding of dopamine-like com-
pounds, such as serotonin and histamine, adding a level
of difficulty to this particular test case.

A small number of the total D2 actives are found in
the top 1% by the similarity search methods. Only the
3D methods, PDT and FEPOPS, fare consistently better
than random at recovering D2 actives given the struc-
ture of DA (Table 2). In terms of hit diversity, FEPOPS
finds five different ring systems (10%) in the top 1%,
whereas PDT finds seven ring systems. Further, FE-

POPS recalls 70% of the RRS classes in the top 20% of
the database (Figure 8). Despite the low return on total
actives, the enrichment for novel RRS classes by the 3D
methods (Figure 9) may afford a suitable starting point
for lead optimization in similar real-life cases.

Retinoids. Retinoic acid receptors (RAR) are nuclear
receptors and transcription factors critical in the dif-
ferentiation of various cell types. Both RAR agonists and
antagonists have been found to have antitumor activi-
ties in several cancers.70 Members of the RAR family
are activated by a number of naturally occurring ret-
inoids, one of which is all-trans-retinoic acid (at-RA), a
carboxylated form of vitamin A. As a launch point to
test for scaffold hopping, we selected at-RA as a probe
to assess for recovery of 308 retinoid compounds from
the MDDR. FEPOPS showed 24-fold enrichment of
actives in the top 1% and 60-fold enrichment for active
ring systems (Table 2). Of the 15 active ring systems,
FEPOPS found nine in the top 0.5%, versus six found
by FCFP_4, five found by MACCS, and two found by
DAYLIGHT (Figures 10 and 11). FEPOPS exclusively
identified RRS classes 9 and 15 as well as all seven
others recalled by FCFP_4, MACCS, DAYLIGHT, and
PDT collectively.

HTS Datasets. The MDDR test cases indicated that
the Pipeline Pilot functional class fingerprints and
MACCS Keys were generally more useful than DAY-
LIGHT as benchmarks in comparing 2D similarity to
the FEPOPS approach. For the HTS dataset test cases,
we have simply compared FEPOPS to FCFP_4 by
assessing the recall of actives, scaffolds, and reduced
ring systems in the top 1% of their ranked lists. The
results are summarized in Figure 12. In the GHS-R,
γ-secretase, and MMP-13 test cases, FEPOPS recalls
more actives than FCFP_4 when given five reference
actives, as well as more scaffolds and novel ring
systems. However, FCFP_4 recovers more inhibitors of
GHS-R and γ-secretase than FEPOPS when given 20
reference actives. This may reflect the fundamental
nature of the descriptors used by the different methods.
For a 3D method such as FEPOPS, an increase in the
number of probe structures may not greatly increase
the amount of new information, since the molecular
representation is largely based on pharmacophores. In
contrast, an increase in new probe structures inherently
presents more topological information to guide searches
with 2D fingerprints.

The results for mABL are significant from a biological
viewpoint, because they involve searching for com-
pounds with similarity to Gleevec that are in fact

Figure 7. Representatives from HIV-RT RRS classes found
by the similarity methods in the top 1% using the probe shown
(MDDR extreg 236942). The RRS designation and percentile
rank are provided. RRS classes found uniquely by a method
have an asterisk.

Figure 8. Cumulative recall of the 48 RRS classes in the top 2% for the D2 dataset (left). The percent of the reranked database
that would need to be tested to find 70% of the active scaffolds/ring systems (right).
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inhibitors of a mutant variant of ABL kinase found in
vivo in some chronic myelogenous leukemia patients
with resistance to Gleevec; thus, the probe molecule
itself has dramatically reduced affinity for the target.
The challenge is to leap from the ineffective inhibitor
to active chemotypes without utilizing structural knowl-
edge about the variant protein target. We found that
FEPOPS hopped from Gleevec to 24% of the mABL
inhibitors in the top 1% most similar compounds, while
sampling from 37% of the active scaffolds and 29% of
the active ring systems (Figure 12). This suggests that
drug-induced mutations in target proteins could be
countered from a pharmacological standpoint by scaffold
hopping from impotent drugs to new potent leads.

In addition to our current scaffold-hopping criteria,
an alternative way of assessing hit list diversity is to

compute the average similarity between the probe
molecule and the recalled hits and to compare this value
with the average similarity between the probe molecule
and the entire activity class. If the similarity of the
probe to all possible actives is comparable to its similar-
ity to the recalled actives, then the hit list is an excellent
(diverse) sampling of the activity class. We further
assessed the diversity of the top ring-system hops made
by FEPOPS and FCFP_4 (in the top 1%) by computing
their Tanimoto similarity to Gleevec using MACCS as
an independent descriptor. The similarity of the FE-
POPS ring-system hops to Gleevec was 0.53 on average
(0.65, 0.56, 0.52, 0.45, 0.57, 0.53, individually), whereas
the Tanimoto similarity of Gleevec to all mABL inhibi-
tors in the dataset was 0.51 on average. These results
illustrate that the FEPOPS ring-system hops repre-
sented well the existing structural diversity in the
dataset. By comparison, the Tanimoto similarity of
Gleevec to the FCFP_4 ring-system hops was somewhat
higher at 0.58 on average. Table 3 explores this alterna-
tive means of assessing hit diversity for the six test
cases where a single probe molecule was used. The
average similarity is shown for each probe to all actives
recalled in the top 1% (not just the scaffold hops). In
each case, the average similarity of the probe to the
recalled actives was lower for FEPOPS than for FCFP_4.

Discussion
We have introduced a novel means to conduct flexible

3D similarity searches using atom cluster centroids, or
feature points, which contain physicochemical (partial
charges and atomic log P) and pharmacophore (hydrogen-
bond donors and acceptors) properties. The feature point
pharmacophores are created by electrostatic-based sort-
ing of the four feature points prior to assigning their
interpoint distances. We have demonstrated that the
FEPOPS representation is applicable for finding leads
with novel scaffolds ranked in the top 0.1-1% of the
database in cases where one or only a few “binders” are
known. The method is extremely robust in terms of
scaffold hopping, and can identify novel scaffolds that
cannot be identified by isosteric replacements. The fuzzy
representation of FEPOPS highly ranks actives from a
variety of scaffold classes with minimal reduction in
total active recall. Importantly, there is not one best
algorithm for all test cases; however, our results suggest
that FEPOPS is consistently a strong performer. For
example, FEPOPS demonstrated the best ring-system
hopping above the top 1% threshold in four of the five
MDDR test cases, while recalling 70% of the active ring
systems first in three of the five test cases. FEPOPS

Figure 9. Representatives from D2 RRS classes found by the
similarity methods in the top 1% using dopamine as a probe.
The RRS designation and percentile rank are provided. RRS
classes found uniquely by a method have an asterisk.

Figure 10. Cumulative recall of the 15 RRS classes in the top 2% for the retinoids dataset. The percent of the reranked database
that would need to be tested to find 70% of the active scaffolds/ring systems (right).
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performs particularly well compared to topological
methods when an endogenous ligand is used as the
similarity query. Efforts to leap from natural ligands
to lead compounds have been made previously using
peptides.8,66 Natural ligands or substrates may also be
used to simply prioritize compounds in a library for
testing against a target. Alternatively, FEPOPS may
serve as an orthogonal approach to complement 2D
methods prior to screening or to recover false negatives
missed by HTS, postscreening.

It is clear that 2D methods are capable of scaffold
hopping to an extent and/or recalling a set of bioactive
compounds with only moderate average similarity to the
probe molecule.29 Further, different 2D similarity meth-
ods return different rankings for actives. This same
observation made by others has led to the paradigm that
using multiple similarity methods benefits the discovery
process.2,41 Nonetheless, in several of the present cases
the ring systems recovered by the 2D methods as a
collective are not so divergentsif scaffold recall is more
desirable than active recall, a better strategy may be

to use a reliable 3D method such as FEPOPS in addition
to 2D methods,28 rather than employing consensus 2D
methods alone. Additionally, the number of ligands
known prior to screening should play a role in the
decision of whether to use 2D- or 3D-similarity search
algorithms, as a larger number of reference compounds
(more than five) more readily benefits 2D methods in
the current study (Figure 12).

The scaffold hopping of PDT is competitive with
FEPOPS and the topological methods, especially in the
D2 test case among the top 1% of ranked compounds
(Figure 10). Many of the D2 binders retrieved in the
top 1% share a common pharmacophore: a donor-
acceptor-hydrophobe triplet, where the acceptor to
hydrophobe distance is ∼3 Å, as in dopamine itself.
These results exemplify how useful explicit pharma-
cophore similarity methods can be if critical pharma-
cophores are known in advance of searching. Other
3D methods may perform better still than PDT and
further benchmarking against FEPOPS would be use-
ful.

Figure 11. Representatives from retinoid RRS classes found by the similarity methods in the top 0.5% using all-trans retinoic
acid as a probe. The RRS designation and percentile rank are provided. RRS classes found uniquely by a method have an asterisk.
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One of the clear advantages of FEPOPS is the fully
automated, unbiased generation of pharmacophore-type
information. With published methods, the construction
of a pharmacophore model often requires flexible align-
ment of known active compounds and hand-picking of
important features. Typically, pharmacophores are com-
posed of a triplet or quartet of single atoms possessing
some critical property (e.g., hydrophobic, hydrogen-bond
donor or acceptor). In contrast, each feature point in
FEPOPS encodes multiple properties, since each atom
with membership in a k-means cluster contributes some
information. Thus, the indigenous atomic environment
of the cluster members is encoded into the centroids.
When performing a pharmacophore-based search, con-
sideration of the atom neighbors of features may prevent
the selection of compounds in which the features reside
in the context of undesirable neighbors. The tradeoff is
that the “whole-molecule pharmacophore” is not explicit
and therefore encodes somewhat less specific informa-
tion than traditional pharmacophores.

Although FEPOPS models contain only a small num-
ber of descriptors per compound, the information en-
codes a layer of complexity that may not be readily
apparent. For example, a hypothetical value of >1 for
the feature “L1” not only indicates the presence of a
hydrophobic region in the molecule, but also reveals that
the most negative portion of the molecule (corresponding
to feature point 1) is hydrophobic. Conversely, a nega-
tive value for “L4” indicates that the most positively
charged portion of the molecule is composed of mostly
hydrophilic atoms.

A striking result from the COX-2 test case is that use
of the bioactive conformation of the probe molecule
rather than a representative set of flexible conformers
does not improve the results and in fact does worse than
the flexible approach at scaffold recovery (Figure 2). It
is possible that because SC-558 is not highly rotatable,
flexible similarity searching may not deteriorate the
pharmacophoric information as much as a ligand with
numerous torsions would. Alternatively, a rigid phar-
macophore model may simply be too restrictive; for
example, it may not take into account flexibility in the
active site that enables induced fits of the numerous
COX-2 antagonists. We have similarly observed that the
bioactive confirmation of lisinopril (PDB code 1O86)71

does not retrieve ACE inhibitors as well as a flexible
lisinopril similarity search (data not shown). There is
further unexpected evidence that pharmacophore mod-
els based on a single bioactive conformation are limit-
ing: we might anticipate one or two SC-558 conformers
from the flexible similarity search are predominantly
most similar to all other COX-2 inhibitors (i.e., the probe
conformations that best represent a common pharma-
cophore), but this is not the case. Each of the seven
probe conformations have subsets of COX-2 inhibitors
to which they are the best correlated. In other words,
each explicit probe conformation contributed to the
overall enrichment of actives. Intriguingly, this finding
holds true for all of the test cases in this study. These
results suggest that allowing probe flexibility may
encourage scaffold hopping more than incorporating a
priori knowledge of bioactive conformations.

FEPOPS Weaknesses. The mechanism of alignment
or matching used by 3D methods is both the cornerstone

Figure 12. Recall of actives, active reduced scaffolds, and
active reduced ring systems (RRS) from HTS hit lists by
FEPOPS and by Pipeline Pilot functional class fingerprints.
The recall is shown only for the highest ranking 1% of
compounds. For cases where multiple probes are used, the
similarity of a compound is measured to each of the probe
molecules and the highest value is used for ranking.
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and the “Achilles’ heel” of active recall. We have
incorporated a relatively simple means of sorting feature
points to simulate field-based alignment by sequentially
assigning feature points from 1 to 4 on the basis of the
sum of atomic partial charges in the k-means cluster.
Precedent for this sorting stratagem can be found in the
creation of conformation-dependent chirality descrip-
tors.15 Additionally, this stratagem was used success-
fully in parallel studies to dock ligands51 and to identify
binding sites on protein surfaces.55 Nonetheless, we
acknowledge that similarity may be unduly impacted
for a congeneric series where various R-group substitu-
tions strongly modify the quadrupole directionality. For
example, in the COX-2 test case, substitution of the SC-
558 trifluoro group with propionic acid causes feature
point 1 to be assigned to the atomic cluster containing
the acid; alignment of this analogue with SC-558 is
problematic for FEPOPS. Shape-based alignment may
offer an alternative way of matching feature points.
However, in many cases, shape-based alignment may
not reasonably align the critical pharmacophore fea-
tures. Further, false negatives may also arise in shape-
based alignments in a congeneric series when bulky R
groups are substituted. In any case, it is important to
note that actives from a congeneric series can easily be
recovered by 2D methods if they are used to complement
3D approaches. Finally, it may be advantageous to
forego presorting of feature points by charge and to align
molecules by matching each of their four feature points
independently. This strategy would result in better
alignments, but a concurrent reduction would occur in
the “layer of complexity” of the descriptors as described
above [i.e., L1 would not automatically describe the
hydrophobicity of the most negative portion of the
molecule (feature point 1)].

The focus of this work is on the novelty of molecular
representation. We have not investigated or attempted
to improve on the variety of existing similarity metrics26

that operate on binary representations of descriptors.
Pearson’s correlation serves as a useful benchmark in
the present study for testing FEPOPS, which, inciden-
tally, preserves the descriptors in a useful form for
visual analysis (Figure 1).

Conclusions
There are several noteworthy aspects of our applica-

tion. FEPOPS is unique in its approach to creating a
pharmacophore from all atoms in the ligand, rather
than from explicit feature pairings.72,73 The clustered-
atom representation is fuzzy (via k-means clustering),
which promotes selection of chemotypes with regional

similarities but unique frameworks. Compound prepro-
cessing includes vital pKa and tautomeric information
often missing from other similarity methods. FEPOPS
finds a small number of diverse, representative con-
formers that cover FEPOPS space efficiently by select-
ing conformations with “minimal dissimilarity” to neigh-
boring conformations (k-medoids clustering). Training
sets of known actives are not required for conducting
similarity searches, nor is knowledge about bioactive
conformations. The method precludes time-intensive
molecular alignments or pharmacophore matching by
a simple, yet effective electrostatic sorting of feature
points that allows for direct statistical correlations of
descriptors. Finally, the calculation time for similarity
searches is nominal (∼8 min for 100K compound data-
base) and comparable to 2D methods once FEPOPS are
precomputed (∼600K compounds/week). The represen-
tations can optionally be mapped back to parent coor-
dinates; thus, for any test compound, the conformation
with the highest correlation to a known active ligand is
potentially a bioactive conformation.
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